Correction: Cell, Isoform, and Environment Factors Shape Gradients and Modulate Chemotaxis
نویسندگان
چکیده
Chemokine gradient formation requires multiple processes that include ligand secretion and diffusion, receptor binding and internalization, and immobilization of ligand to surfaces. To understand how these events dynamically shape gradients and influence ensuing cell chemotaxis, we built a multi-scale hybrid agent-based model linking gradient formation, cell responses, and receptor-level information. The CXCL12/CXCR4/CXCR7 signaling axis is highly implicated in metastasis of many cancers. We model CXCL12 gradient formation as it is impacted by CXCR4 and CXCR7, with particular focus on the three most highly expressed isoforms of CXCL12. We trained and validated our model using data from an in vitro microfluidic source-sink device. Our simulations demonstrate how isoform differences on the molecular level affect gradient formation and cell responses. We determine that ligand properties specific to CXCL12 isoforms (binding to the migration surface and to CXCR4) significantly impact migration and explain differences in in vitro chemotaxis data. We extend our model to analyze CXCL12 gradient formation in a tumor environment and find that short distance, steep gradients characteristic of the CXCL12-γ isoform are effective at driving chemotaxis. We highlight the importance of CXCL12-γ in cancer cell migration: its high effective affinity for both extracellular surface sites and CXCR4 strongly promote CXCR4+ cell migration. CXCL12-γ is also more difficult to inhibit, and we predict that co-inhibition of CXCR4 and CXCR7 is necessary to effectively hinder CXCL12-γ-induced migration. These findings support the growing importance of understanding differences in protein isoforms, and in particular their implications for cancer treatment.
منابع مشابه
A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration.
Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics th...
متن کاملUsing light to shape chemical gradients for parallel and automated analysis of chemotaxis
Numerous molecular components have been identified that regulate the directed migration of eukaryotic cells toward sources of chemoattractant. However, how the components of this system are wired together to coordinate multiple aspects of the response, such as directionality, speed, and sensitivity to stimulus, remains poorly understood. Here we developed a method to shape chemoattractant gradi...
متن کاملDistinct cell shapes determine accurate chemotaxis
The behaviour of an organism often reflects a strategy for coping with its environment. Such behaviour in higher organisms can often be reduced to a few stereotyped modes of movement due to physiological limitations, but finding such modes in amoeboid cells is more difficult as they lack these constraints. Here, we examine cell shape and movement in starved Dictyostelium amoebae during migratio...
متن کاملSingle cell chemotactic responses of Helicobacter pylori to urea in a microfluidic chip
Helicobacter pylori is a spiral-shaped bacterium that grows in the human digestive tract; it infects ~50% of the global population. H. pylori induce inflammation, gastroenteritis, and ulcers, which is associated with significant morbidity and may be linked to stomach cancer in certain individuals. Motility is an essential virulence factor for H. pylori, allowing it to migrate toward and invade ...
متن کاملIdentification of blue-green algae and assessment of their ecological relationship in Chah-Ahmad hot spring of Hormozgan Province
The present study was aimed to identify thermophilic cyanobacterial of Chah-ahmad hot springs located in Hormozgan province. Sampling was done based on water resource condition, Water physicochemical analysis was performed due to their dramatic effects on species distribution. Thermophilic samples collected at different temperature gradients were fixed in 4% formaldehyde to minimize changes in ...
متن کامل